
Stat 5870: Key points and formulae Week 3

A: One- and two-sided null hypotheses:
Notation:
δ = population difference in the means
d = sample estimated difference in averages

two-sided: H0: δ = 0, Ha: δ 6= 0
reject H0 when d sufficient large (d > 0) or sufficiently small (d < 0)

one-sided: two possibilities, depending on which “side”
H0: δ ≤ 0, Ha: δ > 0

reject H0 when d sufficient large (d > 0)
H0: δ ≥ 0, Ha: δ < 0

reject H0 when d sufficient small (d < 0)
p-value for two-sided test “counts” both tails

Twice the smaller one-sided p-value, when randomization distribution symmetric
Two-sided tests much more common, even when only one-side is interesting

Less opportunity to “fudge” the result
Can’t pick the side after seeing the data

B: Model based inference: T-test.
Could use difference of means, but every data set would have a different distribution

Null says δ = 0, doesn’t say anything about spread
Stat theory ⇒ a statistic with a known distribution

T =
statistic− parameter

se of statistic

Usually, parameter = 0 (H0 of no difference) so T = statistic/se
When assumptions (chapter 3) appropriate, T has a theoretical T distribution
Many T distributions: which one depends on (error) degrees of freedom
Reject H0 when T unusually large or unusually small (for 2 sided test)
T > 2 or < −2⇒p < 0.05 (approximately, unless df small)

One sample: statistic is the average:
se = s/
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Note: used “plug-in” principle: using s2 as the estimate of σ2

Strong theoretical justification for doing this

Pooled error variance:
s2p =

(n1 − 1)s21 + (n2 − 1)s22
n1 + n2 − 2

D: Degrees of freedom: how much information used to estimate a variance (or sd)
how much data minus number of “things” you need to estimate
“how much data” = # observations used to compute s

one group:
“how much data” = n, need to estimate mean (1 parameter), so df = n− 1

two groups, pooled variance:
“how much data” = n1 + n2

need to estimate 2 means, so df = n1 + n2 − 2
two groups, unequal variances:

df is complicated, usual approach is the Satterthwaite approximation
not an integer, covered in Stat 571

Analysis often called the Welch T-test

E: Paired data: study design to increase precision and reduce confounding (in obs. study)
compute difference for each subject (pair).
compute mean difference and sd of differences (across subjects)
se = s/

√
n

Note: This is the se of the difference because it is computed directly from differences
df = n− 1 because there n values (each a pair)
Serious error to ignore pairing when it exists (Design matters!)
Or to use paired analyses when data aren’t

F: Mis-interpretations of p-values:
Frequently mis-interpreted, leading many to reject any use of p-values

Does not prove null hypothesis (even if p-value large)
Does not show that alternative more likely than null.

Hypothesis test really doesn’t tell you much
if p small, test gives you evidence that the parameter is not zero.
even though p-values are all over the scientific literature

G: Confidence interval: tells you both location and precision of a statistic.
a 95% interval includes all parameters for which p-value > 0.05
Many statistics: estimate± Tprob × se

Tprob is a quantile of the appropriate T distribution
Tprob approx 2 for 95% interval unless df small

How quantiles are labelled:
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Tprob is the value (quantile) such that P [T ≤ Tprob] = prob
so prob of the T distribution is less than or equal to the quantile

For a 95% confidence interval, we need 2 T quantiles
one has 2.5% probability below it other has 2.5% probability above it = 97.5% prob-

ability below it We need T0.025 and T0.975 for the appropriate degrees of freedom For
a 99% interval, we need T0.005 and T0.995 These have 99% of the T distribution between
them Often written as Tα/2 and T1−α/2 for a 1−α% confidence interval The T distribution
is symmetrical, so T0.025 = −T0.975 So sometimes see: (−T0.975, T0.975)

CI connected to (some) information about the p-value:
95% interval includes 0, e.g., (-2, 4) ⇒ p-value for test of 0 > 0.05
95% interval does not include 0, e.g., (-2, -1) or (3, 100)⇒ p-value for test of 0 < 0.05
99% interval does not include 0 ⇒ p-value for test of 0 < 0.01

H: Two schools of inference:
Frequentist: parameters have fixed but unknown values
Bayesian: parameters are random variables, so have a distribution

Confidence intervals are frequentist:
The interval is random; it depends on random values (mean, se)

Different samples give different confidence intervals
Most include the true parameter; some do not. Don’t know which is which

Coverage is P[interval includes true but unknown parameter]
Example: Calculate a 95% ci using estimate± Tquantilese and get (5,10).

How can you interpret this?
Correct: The interval calculated by estimate± Tquantilese has an 0.95 probability

of including the true but unknown parameter
technically Incorrect: claim P[parameter between 5 and 10] = 0.95

Because probabilities are properties of random variables.
Parameter is not a random variable

Bayesian interval called a credible interval:
Allowed to talk about P[parameter between 5 and 10] or P[parameter > 0]
Different calculations,

need additional information (the prior distribution), and lots more math
but in almost all cases, can set up the problem so that

the credible interval is exactly the same as the confidence interval
So, I don’t make a distinction

you can interpret a confidence interval as a credible interval.
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